您好!今天是2018年2月20日 星期二
加入收藏| 设为首页| 联系方式
网站首页
欢迎来到:中国科学院量子信息重点实验室
实验室概况
实验室介绍| 机构设置| 历史沿革| 联系我们
科研体系
固态量子计算研究单元| 量子纠缠网络研究单元| 量子集成光学芯片研究单元| 量子密码与量子器件研究单元| 量子理论研究单元
科研成果
研究进展| 获奖| 论文与专著| 专利
实验室成员
固定成员| 双聘人员| 博士后| 招聘信息
科普中心
郭光灿的量子十问 | 来自量子世界的新技术
研究生园地
研究生招生
新闻中心| 公告通知| 学术报告| 媒体关注| 友情链接

更多>>学术报告

1月25日Hannes Busche报告

报告时间:1月25日 周四  上午10:00 报告地点:实验室一楼会议室 报告人:Dr. Hannes Busche(Joint Quantum Centre Durham-Newcastle) 报告题目: Contactless quantum non-linear optics in cold Rydberg ensembles 摘要: Rydberg non-linear optics [1] has emerged as a viable approach to induce strong effective photon-photon interactions, e.g. for applications in optical quantum information processing. Using electromagnetically induced transparency and photon storage, the μm-ranged dipolar interactions between collective Rydberg excitations, can be mapped onto photons. So far, experiments focussed on observing Rydberg-mediated photon interactions between overlapping modes within a single cold atomic medium [1]. Recently however, we have demonstrated an effective interaction between photons stored in spatially separate atomic ensembles and propagating in non-overlapping modes [2]. By analysing the statistics of the retrieved photons, we observe how the interaction varies while changing the distance between the clouds, the Rydberg state employed for storage, and the interaction time.  The stored photons can be coherently controlled using an additional microwave field which drives transitions between Rydberg states. Interfacing with microwaves allows to drive high-fidelity Rabi oscillations while the photons are stored and to shape the retrieved pulse [3]. The degrees of freedom provided by contactless, long-range effective interactions between stored photons combined with microwave control of their state and phase may lead towards a Rydberg-based all-optical quantum gate [4] and applications in quantum simulation. Ref:  [1] O. Firstenberg, C. S. Adams, and S. Hofferberth, J. Phys. B, 49, 15 (2016). [2] H. Busche, P. Huillery, S. W. Ball, T. Ilieva, M. P. A. Jones, and C. S. Adams, Nat. Phys.,13, 655–658 (2017). [3] S. W. Ball et al., in preparation. [4] D. Paredes-Barato and C. S. Adams, Phys. Rev. Lett.,112, 040501 (2014).

更多>>媒体关注

【科技日报】我首次实现纳米机电系统非近邻模式耦合

 科技日报合肥1月30日电 (记者吴长锋)记者从中国科技大学获悉,该校郭光灿院士领导的中科院量子信息重点实验室在纳米机电系统(NEMS)方面取得最新进展。该实验室与美国加州大学团队合作,在研究两个石墨烯纳米谐振器的模式耦合过程中,创新性地引入第三个谐振器作为声子腔模,成功地实现了非近邻的模式耦合。相关研究成果发表在近日出版的《自然通讯》上。 纳米谐振器具有尺寸小、稳定性好、品质因子高等优点,是信息存储和操控的优良载体。为了实现不同谐振模式之间的信息传递,需要先实现模式间的可控耦合。近年来,国际上不同研究组针对同一谐振器中的不同谐振模式以及近邻谐振器之间的模式耦合机制进行了深入研究。然而,对于如何实现非近邻的、可调的谐振模式耦合,国际上一直未见相关报道。 针对这一难题,研究组设计和制备了三个串联的石墨烯纳米谐振器,每个谐振器的谐振频率可以通过各自底部的金属电极进行大范围的调节,因此只要设定合适的电极电压就可以实现三个谐振器的共振耦合。研究组首先测量到了两个近邻谐振器之间的模式劈裂,证明了在该串联结构中近邻谐振器可以达到强耦合区间,这为进一步探索第一个和第三个谐振器之间的耦合创造了条件。经过实验探索,研究组发现当把中间谐振器的共振频率调到远高于(或远低于)两端谐振器的共振频率时,两端谐振器之间不能发生模式劈裂,即二者耦合强度非常小;但是当中间谐振器的共振频率逐渐靠近两端谐振器的共振频率时,两端谐振器逐渐产生模式劈裂,且劈裂值逐渐增大。 该实验是首次在纳米谐振器体系中实现谐振模式的非近邻耦合,对于纳米机电谐振器领域的发展具有重要的推动意义,并且为将来在量子区间利用声子模式进行信息的长程传递创造了条件。   科技日报2018年1月31日 http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2018-01/31/content_387656.htm?div=-1

地址:
安徽合肥中国科学技术大学量子信息重点实验室
电话:
0551-63606040 0551-63606041
传真:
0551-63606828