您好!今天是2021年10月19日 星期二
加入收藏| 设为首页| 联系方式
网站首页
欢迎来到:中国科学院量子信息重点实验室
实验室概况
实验室介绍| 机构设置| 历史沿革| 联系我们
科研体系
固态量子计算研究单元| 量子纠缠网络研究单元| 量子集成光学芯片研究单元| 量子密码与量子器件研究单元| 量子理论研究单元
科研成果
研究进展| 获奖| 论文与专著| 专利
实验室成员
固定成员| 双聘人员| 博士后| 招聘信息
科普中心
郭光灿的量子十问 | 来自量子世界的新技术
研究生园地
研究生招生| 博士答辩
新闻中心| 公告通知| 学术报告| 媒体关注| 友情链接

首页栏目

当前位置:首页>首页栏目> 学术报告

学术报告


4月13日学术报告(已取消)

发布时间:2016-04-09

Rinaldo由于生病,不能来访问我们实验室。此报告取消。


时间:4月13日上午10:00——11:00

地点实验室一楼会议室

报告人:奥地利约翰开普勒林茨大学Rinaldo Trotta教授

题目:Semiconductor-Piezoelectric Quantum-Dot Devices for Quantum Networking

摘要:

The development of scalable quantum devices that generate and distribute non-classical light over distant parties will bring about a revolution in communication science and technology. Epitaxial quantum dots (QDs) embedded in conventional optoelectronic devices – such as light-emitting diodes – are arguably the most promising quantum devices, since they combine the capability of QDs to generate single and entangled photons on-demand with the tools of the mature semiconductor technology. However, the possibility to use dissimilar QDs for quantum networking is severely hampered by the very same problem plaguing single QDs since their birth: the lack of control over their emission properties, a hurdle arising from the stochastic QD growth processes and intrinsically related to the difficulties of controlling matter at the nanoscale.


In this talk, I will propose a possible solution to this long-standing problem. I will first introduce a novel class of semiconductor-piezoelectric devices [1, 2] in which different external perturbations are combined to reshape the electronic structure of any arbitrary QD [3, 4] so that single and polarization-entangled photons can be generated with unprecedented quality, efficiency, and speed [5, 6]. Then, I will show how full control over the QD in-plane strain tensor allows the energy of the entangled photons emitted by QDs to be precisely controlled [7, 8] in the spectral range in which a cloud of natural atoms behaves as a slow-light medium [9], and I will demonstrate slow-entangled photons from a single quantum emitter [10]. To conclude, I will discuss how the developed technology can be exploited for the distribution of quantum entanglement among the distant nodes of a quantum network made of electrically-controlled devices interfaced with natural atoms.


[1] R. Trotta, et al. Adv. Mater. 24, 2668 (2012).
[2] R. Trotta, et al., in “Engineering the atom-photon interaction”(Springer, Berlin, 2015).
[3] R. Trotta, et al. Phys. Rev. Lett. 109, 147401 (2012).
[4] R. Trotta, et al. Phys. Rev. B 88, 155312 (2013).
[5] R. Trotta, et al. Nano Lett. 14, 3439 (2014).
[6] J. Zhang, et al. Nature Comm. 6, 10067 (2015).
[7] R. Trotta, et al. Phys. Rev. Lett. 114, 150502 (2015).
[8] J. M. Sánchez et al., Adv. Opt. Mat. 2016, DOI 10.1002/adom.201500779
[9] J. S. Wildmann, et al. Phys. Rev. B 92, 235306 (2015).