您好!今天是2021年10月19日 星期二
加入收藏| 设为首页| 联系方式
网站首页
欢迎来到:中国科学院量子信息重点实验室
实验室概况
实验室介绍| 机构设置| 历史沿革| 联系我们
科研体系
固态量子计算研究单元| 量子纠缠网络研究单元| 量子集成光学芯片研究单元| 量子密码与量子器件研究单元| 量子理论研究单元
科研成果
研究进展| 获奖| 论文与专著| 专利
实验室成员
固定成员| 双聘人员| 博士后| 招聘信息
科普中心
郭光灿的量子十问 | 来自量子世界的新技术
研究生园地
研究生招生| 博士答辩
新闻中心| 公告通知| 学术报告| 媒体关注| 友情链接

首页栏目

当前位置:首页>首页栏目> 学术报告

学术报告


4月1日学术报告

发布时间:2016-03-23

时间:4月1日上午10:00

地点:实验室一楼会议室

报告人:香港中文大学 袁海东 教授


Introduction:
    Dr. Haidong Yuan received his B.E. in Electronic Engineering from Tsinghua University, Beijing, 2001. He got his M.S. in Engineering Science in 2002 and Ph.D. in Applied Mathematics in 2006, both from Harvard University. He then did his postdoctoral work at Harvard University and Massachusetts Institute of Technology. From August 2012 to August 2014, he worked as an assistant professor at the department of Applied Mathematics, the Hong Kong Polytechnic University. He joined the Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong as an assistant professor in September, 2014.

Research interests:

    1. Dynamical system and control theory: nonlinear control theory; geometric control theory; optimal, robust, and stochastic control
    2. Modeling and control of systems at micro, nano and mesoscopic scale: spin dynamics, control of coherent spectroscopy, Ion trap, superconducting quantum interference devices, nuclear magnetic resonance, magnetic resonance imaging, quantum optics.
    3. Quantum information and quantum computing

    4. Complex systems and networks


Title: Ultimate precision limit for quantum parameter estimation

Abstract: Measurement and estimation of parameters are essential for science and engineering, where the main quest is to find out the highest achievable precision with given resources and design schemes to attain it. With recent development of technology, it is now possible to design measurement protocols utilizing quantum mechanical effects, such as entanglement, to attain far better precision than classical schemes. This has found wide applications in quantum phase estimation, quantum imaging, atomic clock synchronization, etc, and created a high demand for better understanding of measurement protocols based on quantum mechanical effects. In this talk I will present a general framework for quantum metrology. This framework relates the ultimate precision limit directly to the geometrical properties of the underlying quantum dynamics, it also provides efficient methods for obtaining the ultimate precision limit and the optimal schemes. An analytical formula for the precision limit with arbitrary pure probe states will also be given, which spares the need of optimization required in previous studies. Some implications of the framework on quantum channel  discrimination and quantum speed limit will also be discussed.