报告时间:2023年6月19日上午9:00
报告地点:实验室一楼会议室
报告人:程书明 同济大学特聘研究员
报告题目:Faithful geometric measures for genuine tripartite entanglement
报告摘要:
We present a faithful geometric picture for genuine tripartite entanglement. We first find that the triangle relation $\mathcal{E}^\alpha_{i|jk}\leq \mathcal{E}^\alpha_{j|ik}+\mathcal{E}^\alpha_{k|ij}$ holds for all subadditive bipartite entanglement measures $\mathcal{E}$, all permutations under parties $i, j, k$, all $\alpha \in [0, 1]$, and all pure tripartite states. It then provides a geometric interpretation that bipartition entanglement, measured by $\mathcal{E}^\alpha$, corresponds to the side of a triangle, of which the area with $\alpha \in (0, 1)$ is nonzero if and only if the tripartite state is genuinely entangled. Moreover, we rigorously prove the non-obtuse triangle area with $0<\alpha\leq 1/2$ is a measure for genuine tripartite entanglement. Useful lower and upper bounds for these measures are obtained, and generalisations of our results are also presented. Finally, all above results are significantly strengthened for qubits that, given a set of subadditive and non-additive measures, some state is always found to violate the triangle relation for any $\alpha>1$, and the triangle area is not a measure for any $\alpha>1/2$. Hence, our results are expected to aid significant progress in studying entanglement of multipartite quantum systems.
报告人简介:
程书明,同济大学电子与信息科学学院特聘研究员,青年百人B岗,博士生导师。 先后于2017年中科院数学与系统科学研究院,2018年澳大利亚格里菲斯大学获得博士双学位。2019年-2020年在百度量子计算研究所工作。2020年9月入职同济大学。程博士研究领域为量子信息与量子计算、量子机器学习等,先后在领域顶级期刊发表论文数十多篇,包括PRL/Optica/PRA等。
编辑时间:2023-06-17 22:22:55