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Recall: major points in the previous lecture

● Thomas-Fermi-Dirac approximation

● Slater Xα method

● Hohenberg-Kohn (KS) theorem II

𝐸HK 𝑛, 𝑣𝑒𝑥𝑡 = 𝐹HK 𝑛 + න𝑑3 𝑟𝑣𝑒𝑥𝑡 𝒓 𝑛 𝒓 ≥ 𝐸0 = 𝐸HK 𝑛0

Domain of 𝑛(𝒓): 𝑣-representable density, i.e., corresponding to 
certain physically realizable 𝑣𝑒𝑥𝑡 𝒓 .

𝐹HK 𝑛 = Ψ 𝑛 ∣ ෠𝑇 + ෠𝑉𝑒𝑒 ∣ Ψ 𝑛 –– Universal functional

𝐸0 = ตmin
𝑛 𝐫

𝐸HK 𝑛, 𝑣𝑒𝑥𝑡



Hohenberg-Kohn (HK) Theorem

𝐹HK 𝑛 = 𝛹0 𝑛 ∣ ෠𝑇 + ෠𝑉𝑒𝑒 ∣ 𝛹0 𝑛 = 𝑇 𝑛 + 𝑉𝑒𝑒 𝑛

I. Applying the HK theorem to Coulomb interacting systems:

𝐹HK[𝑛] is a universal functional, depending only on the particle density, and
valid for all systems with different 𝑣𝑒𝑥𝑡 𝒓 .

𝐸 𝑛 = 𝐸 𝑛, 𝑣𝑒𝑥𝑡 depends also on the external potential, and its global 
minimum corresponds to the ground state density and energy of the system.

II. Applying the HK theorem to non-interacting system：

𝐹HK 𝑛 = Φ0 𝑛 ∣ ෠𝑇 ∣ Φ0 𝑛 = 𝑇𝑠 𝑛

The HK theorem is not restricted to Coulomb systems



Levy and Lieb's constrained search method
The existence of a universal functional can be proved in a different way; 
this is the so-called

𝐸0 =ถ𝑚𝑖𝑛
Ψ

𝛹 ∣ ෡𝐻 ∣ Ψ = Ψ0 ∣ ෡𝐻 ∣ Ψ0

In quantum mechanics, there exists the Rayleigh-Ritz variational principle:

Ψ ∈{𝑁-particle antisymmetric wave functions}

In essence, the Levy & Lieb constrained search method is the application of the 
Rayleigh-Ritz variational method in two successive steps.

Constrained search method (M. Levy; E. Lieb, 1979)



Levy and Lieb's constrained search method

෡𝐻 = ෠𝑇 + ෠𝑉𝑒𝑒 +෍

𝑖

𝑁

𝑣𝑒𝑥𝑡 𝐫𝐢

Two-step minimization:

First , fix 𝑛 𝒓 , minimize Ψ ෠𝑇 + ෠𝑉𝑒𝑒 Ψ with respect to Ψ that yields 𝑛 𝒓

𝐸LL 𝑛 = ตmin
Ψ→𝑛 𝐫

Ψ ∣ ෠𝑇 + ෠𝑉𝑒𝑒 ∣ Ψ + න𝑑3 𝑟𝑣𝑒𝑥𝑡 𝒓 𝑛 𝒓

= 𝐹LL 𝑛 + න𝑑3 𝑟𝑣𝑒𝑥𝑡 𝐫 𝑛 𝐫

ตmin
𝑛 𝒓

𝐸LL 𝑛 = 𝐸LL 𝑛0 = 𝐸0

Second , minimize 𝐸LL[𝑛] with respect to 𝑛 𝒓

𝐸0 =ถ𝑚𝑖𝑛
Ψ

Ψ ∣ ෡𝐻 ∣ Ψ = Ψ0 ∣ ෡𝐻 ∣ Ψ0



Constrained search method: 
the case of degenerate ground states 

෡𝐻 ඀ቚΨ0
𝑗
= 𝐸0 ฬ ඀Ψ0

𝑗
, 𝑗 = 1, … , 𝐷

𝑛0
𝑗
𝒓 = Ψ0

𝑗
ො𝑛 𝒓 Ψ0

𝑗 𝑛0
𝑗
𝐫 for different j can be the same or different.

● If more than one degenerate ground-state wave functions ฬ ඀Ψ0
𝑗

yield the same density ෤𝑛0 𝒓 , then

𝐸LL ෤𝑛0 = Ψ0
𝑗 ෡𝐻 Ψ0

𝑗
ฬ ඀Ψ0

𝑗
is any of the degenerate

ground-state wave functions.

● For degenerate states with different particle densities, then

𝐸LL 𝑛0
𝑗
= 𝐹LL 𝑛0

𝑗
+න𝑑3 𝑟𝑣𝑒𝑥𝑡 𝐫 𝑛0

𝑗
𝐫 = 𝐸0



Hohenberg-Kohn  functional versus
Levy-Lieb functional

● Levy-Lieb functional applies to degenerate ground states

● Levy-Lieb functional is defined within a large variational space of electron
density, namely, any density that can be obtained from a 𝑁-particle 
anti-symmetric wave function. This is the so-called “𝑛-representability”.

● Within the domain of “𝑣-representable” densities, the two
functionals yield the same results.

𝐹LL[𝑛] = ถ𝑚𝑖𝑛
Ψ→𝑛 𝐫

Ψ ∣ ෠𝑇 + ෠𝑉𝑒𝑒 ∣ Ψ

𝐹HK 𝑛 = Ψ0 𝑛 ∣ ෠𝑇 + ෠𝑉𝑒𝑒 ∣ Ψ 𝑛



From many-particle system back to single-
particle system: the Kohn-Sham method

Some thoughts of W. Kohn：

Nobel Lecture, published in 1999

L.J. Sham



Recalling the Hartree Equation ...

• The Hartree equation:

−
𝛻2

2m
+ 𝑉𝑒𝑓𝑓 𝒓 ϕ𝑙 𝒓 = ϵ𝑙ϕ𝑙 𝒓

𝑉𝑒𝑓𝑓 𝒓 = 𝑉𝑒𝑥𝑡 𝒓 + න𝑑3 𝑟′
𝑛 𝒓′

∣ 𝒓 − 𝒓′ ∣

𝑛 𝒓 =෍

𝑙=1

𝑁

∣ ϕ𝑙 𝒓 ∣
2

How to interpret the Hartree equation from the viewpoint of DFT?



Noninteracting Many-particle System from 
the Viewpoint of DFT

• Noninteracting many-particle system:

−
𝛻2

2m
+ 𝑣𝑎𝑢𝑥 𝒓 ϕ𝑙 𝒓 = ϵ𝑙ϕ𝑙 𝒓

𝑛0 𝒓 =෍

𝑙=1

𝑁

∣ ϕ𝑙 𝒓 ∣
2
,

𝑣𝑎𝑢𝑥 𝐫 is certain fixed
external potential

• The Hamiltonian:

෡𝐻 = ෠𝑇 + ෠𝑉𝑎𝑢𝑥 =෍

𝑖=1

𝑁

−
𝛻𝑖
2

2m
+ 𝑣𝑎𝑢𝑥 𝒓i

𝐸 𝑛, 𝑣𝑎𝑢𝑥 = 𝑇𝑠 𝑛 + න𝑑3 𝑟𝑣𝑎𝑢𝑥 𝒓 𝑛 𝒓 ≥ 𝐸0

𝐸0 =෍

𝑙=1

𝑁

ϵ𝑙

Applying the Hohenberg-Kohn theorem:



Noninteracting many-particle system from 
the viewpoint of DFT

−
𝛻2

2𝑚
+ 𝑣𝑎𝑢𝑥 𝒓 𝜙𝑙 𝒓 = 𝜖𝑙𝜙𝑙 𝒓

𝑛0 𝒓 =෍

𝑙=1

𝑁

∣ ϕ𝑙 𝒓 ∣
2
,

𝐸 𝑛, 𝑣𝑎𝑢𝑥 = 𝑇𝑠 𝑛 + න𝑑3 𝑟𝑣𝑎𝑢𝑥 𝒓 𝑛 𝒓 ≥ 𝐸0

𝐸0 =෍

𝑙=1

𝑁

ϵ𝑙

δ 𝐸 𝑛, 𝑣𝑎𝑢𝑥 − μ න𝑛 𝒓 𝑑3𝑟 − 𝑁 = 0

δ𝑇𝑠 𝑛

δ𝑛 𝒓
+ 𝑣𝑎𝑢𝑥 𝒓 − μ = 0,

δ𝑇𝑠 𝑛

δ𝑛 𝒓
is unknown!

The above equation cannot be directly solved, but
the solution of the problem is known.

can be viewed as an auxiliary 
single-particle problem.



Energy functional of interacting many-
particle system

𝐸𝑣𝑒𝑥𝑡 𝑛 = 𝑇 𝑛 + 𝑉𝑒𝑒 𝑛 + න𝑑3 𝑟𝑣𝑒𝑥𝑡 𝒓 𝑛 𝒓 ≥ 𝐸0

Re-expressing the functional as：

𝐸𝑣𝑒𝑥𝑡 𝑛 = 𝑇𝑠 𝑛 + 𝐸𝐻 𝑛 + 𝐸𝑥𝑐 𝑛 + න𝑑3 𝑟𝑣𝑒𝑥𝑡 𝒓 𝑛 𝒓

𝑇 𝑛 : Kinetic energy functional of interacting system;

𝑇𝑠 𝑛 : Kinetic energy functional of noninteracting system;

: The Hartree energy functional;

Exchange-correlation energy functional (everything unknown).

𝐸𝐻 𝑛

𝐸𝑥𝑐 𝑛 = 𝑇 𝑛 + 𝑉𝑒𝑒 𝑛 − 𝑇𝑠 𝑛 − 𝐸𝐻 𝑛



Applying the same strategy to interacting 
problem ...

δ 𝐸𝑣𝑒𝑥𝑡 𝑛 − μ න𝑛 𝒓 𝑑3𝑟 − 𝑁 = 0

δ𝑇𝑠 𝑛

δ𝑛 𝒓
+ 𝑣𝑒𝑓𝑓 𝒓 − μ = 0

𝐸𝑣𝑒𝑥𝑡 𝑛 = 𝑇𝑠 𝑛 + 𝐸𝐻 𝑛 + 𝐸𝑥𝑐 𝑛 + න𝑑3 𝑟𝑣𝑒𝑥𝑡 𝐫 𝑛 𝐫

δ𝐸𝑣𝑒𝑥𝑡 𝑛 = නδ𝑛 𝒓
δ𝑇𝑠 𝑛

δ𝑛 𝒓
+ 𝑣H 𝑛 +

δ𝐸𝑥𝑐 𝑛

δ𝑛 𝒓
+ 𝑣𝑒𝑥𝑡(𝒓)

𝑉𝑒𝑓𝑓 𝐫

Suppose 𝑣𝑒𝑓𝑓(𝒓) is known, one can obtain the ground-state electron density of 

the original many-body problem via an auxiliary single-particle problem. 



The Kohn-Sham equation (1965)

−
𝛻2

2m
+ 𝑣𝑒𝑓𝑓 𝒓 ϕ𝑙 𝒓 = ϵ𝑙ϕ𝑙 𝒓

𝑣𝑒𝑓𝑓 𝐫 = 𝑉𝑒𝑥𝑡 𝒓 + න𝑑3 𝑟′
𝑛 𝒓′

∣ 𝒓 − 𝒓′ ∣
+
δ𝐸𝑥𝑐 𝑛

δ𝑛 𝒓

𝑛 𝒓 =෍

𝑙=1

𝑁

∣ ϕ𝑙 𝒓 ∣
2

In contrast to the Hartree case, by solving the Kohn-Sham equation, one can 
in principle obtain the exact ground-state energy and density of interacting 
systems, if 𝐸𝑥𝑐[𝑛] is known exactly.

To be solved
self-consistently

𝐸0 = −
1

2𝑚
෍

𝑙=1

𝑁

ϕ𝑙 ∣ 𝛻
2 ∣ ϕ𝑙 + 𝐸𝐻 𝑛0 + 𝐸𝑥𝑐 𝑛0 +න𝑑3 𝑟𝑣𝑒𝑥𝑡 𝒓 𝑛0 𝐫

𝑛 𝐫 → 𝑛0 𝐫



The underlying assumption of the Kohn-Sham 
method: non-interacting 𝑣-representability

δ𝑇𝑠 𝑛

δ𝑛 𝒓
+ 𝑣𝑒𝑓𝑓 𝑛 (𝒓) − μ = 0

𝑉𝑒𝑓𝑓 𝑛 (𝒓) = 𝑉H 𝑛 (𝒓) +
δ𝐸𝑥𝑐 𝑛

δ𝑛 𝒓
+ 𝑉𝑒𝑥𝑡 𝒓

Kohn-Sham ansatz:

𝑛 𝒓 =෍

𝑙=1

𝑁

∣ ϕ𝑙 𝒓 ∣
2

−
𝛻2

2m
+ 𝑉𝑒𝑓𝑓 𝐫 ϕ𝑙 𝐫 = ϵ𝑙ϕ𝑙 𝐫

The ground-state density of any interacting system can be reproduced 
by a non-interacting system.



The physical meaning of Kohn-Sham (KS) 
orbitals (a highly debated topic)

● KS orbitals are auxiliary variables, and have no strict physical meaning (except 
for HOMO and LUMO). They are introduced to reproduce the particle density 
of interacting systems 

𝑛 𝒓 =෍

𝑙=1

𝑁

∣ ϕ𝑙 𝒓 ∣
2

● The energy of highest occupied molecular orbital (HOMO) 𝜖𝑁 corresponds to 
the first ionization energy of the system  – the Janak theorem (1978).

𝐼 = 𝐸0 𝑁 − 1 − 𝐸0 𝑁 = −ϵ𝑁

KS orbitals and orbital energies are determined  (implicitly) by the electron density:

ϵ𝑙 = ϵ𝑙 𝑛0 ; ψ𝑙 = ψ𝑙 𝑛0



Features of the Kohn-Sham method

● The KS scheme is one particular implementation of DFT (and not the unique 
one). The key is to map the interacting many-body system to independent-
particle system; by solving the independent-particle problem self-
consistently, one obtains the particle density and ground-state energy of the 
physical, interacting problem.

● Comparison to the Hartree-Fock method: 

The Hartree-Fock (HF) equations are  obtained by minimizing the energy; 
solving the HF equation one obtains the “best” energy under the single-
determinant constraint. HF is an approximation intrinsically.  The KS 
equations are  obtained by mapping; solving the KS equation one obtains 
the best particle density. The KS method is an exact method in principle.

● In practical calculations 𝐸𝑥𝑐[𝑛] and 𝑣𝑥𝑐 𝑛 must be approximated.



𝐸𝑥𝑐 𝑛 and 𝑉𝑥𝑐[𝑛](𝒓)

𝑉𝑥𝑐 𝑛 (𝒓) =
δ𝐸𝑥𝑐 𝑛

δ𝑛 𝒓

Exact form 𝐸𝑥𝑐 𝑛 of is not known, and will not be known. In practice the 
approximation for 𝐸𝑥𝑐 𝑛 determines the quality of KS-DFT calculations. 
Looking for accurate and generally applicable 𝐸𝑥𝑐 𝑛 is a key issue in KS-
DFT.

The KS potential 𝑣𝑒𝑓𝑓[𝑛] 𝒓 = 𝑣𝑒𝑥𝑡 (𝒓) + 𝑣𝐻[𝑛] 𝒓 + 𝑣𝑥𝑐 𝒓 is a unique 
property of  interacting electron systems.

𝑣𝑒𝑓𝑓 𝒓 = 𝑣𝑒𝑥𝑡 (𝒓) + 𝑣𝐻 𝒓 + 𝑣𝑥𝑐 𝒓

𝑛 𝒓 ⟷ 𝑣𝑒𝑥𝑡 𝒓
𝑛 𝒓 ⟷ 𝑣𝑒𝑓𝑓 𝒓

Interacting physical system

KS model system
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Homework II

Discuss and compare the following methods/approximations, and describe your 
own understandings of these approaches.

1. the Hartree approximation

2. the Hartree-Fock approximation

3. Thomas-Fermi-Dirac method

4. Slater Xα method

5. Kohn-Sham method


