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Recall: major points in the previous lecture

. Thomas-Fermi-Dirac approximation
. Slater Xa method

. Hohenberg-Kohn (KS) theorem Il

Eng[n, vext]l = Fukln] + jd3 TVext (MN(r) = Ey = Eyg[nol
FakIn]l = (W[n] I T +V,, | ¥[n]) — Universal functional

Eo = min Egg[n, vex:]

——

n(r)

Domain of n(r): v-representable density, i.e., corresponding to
certain physically realizable v, (r).



Hohenberg-Kohn (HK) Theorem

Fyk[n] is a universal functional, depending only on the particle density, and
valid for all systems with different v, ().

E[n] = E[n, v,,;] depends also on the external potential, and its global
minimum corresponds to the ground state density and energy of the system.

The HK theorem is not restricted to Coulomb systems

|. Applying the HK theorem to Coulomb interacting systems:

Fukln] = (Woln] | T+ Vee | Woln]) = T[n] + Vee[n]
Il. Applying the HK theorem to non-interacting system:

Fuk[n] = (@o[n] | T | @4[n]) = Ts[n]



Levy and Lieb's constrained search method

The existence of a universal functional can be proved in a different way;
this is the so-called

Constrained search method (M. Levy; E. Lieb, 1979)

In quantum mechanics, there exists the Rayleigh-Ritz variational principle:

Eo=min(¥ | H|¥Y)=(¥ | H|¥)
P

Y e{N-particle antisymmetric wave functions}

In essence, the Levy & Lieb constrained search method is the application of the
Rayleigh-Ritz variational method in two successive steps.



Levy and Lieb's constrained search method

Eo =min(¥Y | H| W) =(¥, | H|¥,)
R

N
A=T+Toe+ ) Ve ()
i

Two-step minimization:

First, fix n(r), minimize (¥|T + V,.|¥) with respect to ¥ that yields n(r)
Erpln] = IEEB (PIT+ 17ee | V) + de TVext (M)N(T)
Y-n(r)

= Fyuln] + j 053 70 (D)D)

Second, minimize Ey;[n] with respect to n(r)

min Eyp[n] = Epplnel = Eg
n(r)



Constrained search method:
the case of degenerate ground states

ﬁ|tp({> = E, lIJ({>, j=1,..,D

n(f)'(r) = <ng ﬁ(r)|tpg> n{;(r) for different j can be the same or different.

. If more than one degenerate ground-state wave functions LP({>

yield the same density 7iy(1), then

Ey[fio] = <tpg' |ﬁ‘q1({>

LP({> is any of the degenerate

ground-state wave functions.

. For degenerate states with different particle densities, then

E; [n{,] = F [n{,] + fd3 rvext(r)n{;(r) = E,



Hohenberg-Kohn functional versus
Levy-Lieb functional

Fiu[n] = min ($IT+V,, V)
Y-n(r)

Fuk[n] = (Wo[n] | T + Ve | P[n])

. Levy-Lieb functional applies to degenerate ground states

. Levy-Lieb functional is defined within a large variational space of electron
density, namely, any density that can be obtained from a N-particle
anti-symmetric wave function. This is the so-called “n-representability”.

. Within the domain of “v-representable” densities, the two
functionals yield the same results.



From many-particle system back to single-
particle system: the Kohn-Sham method

L.J. Sham

Some thoughts of W. Kohn:

In the winter of 1964, I returned from France to San Diego, where I found

my new post-doctoral fellow, Lu Sham. I knew that the Hartree equations de-

scribed atomic groundstates much better than TF theory. The difference be-

tween them lay in the different treatments of the kinetic energy 7 (See Egs.
(4.10) and (4.13). I set ourselves the task of extracting the Hartree equations
from the HK variational principle for the energy, Egs. (4.9), (4.7), (4.8),
which I knew to be formally exact and which therefore had to have the
Hartree equations and improvements “in _them”. In fact it promised a
Hartree-like formulation, which - like the HK minimal principle — would be
formally exact.

Nobel Lecture, published in 1999



Recalling the Hartree Equation ...

 The Hartree equation:

VZ
. <_— + Veff(r)> bi(r) = €,y (r)

2m

n(r’)

|r—1|

- Veff(r) = Vexe (1) + de r

N
() = Z| by (1) |
=1

How to interpret the Hartree equation from the viewpoint of DFT?



Noninteracting Many-particle System from
the Viewpoint of DFT

Noninteracting many-particle system:

2
(‘ Z_m T Vaux (7‘)> $,(1) = €,d;(r) Vaux(r) is certain fixed

external potential
N N
@ =Y 1@ P, E= ) &
=1

=1
 The Hamiltonian:

H=T+ Vpy ﬁ:( +vaux(r1)>

Applying the Hohenberg-Kohn theorem:

E[n, vgyxl = TsIn] + st TVqux(MIn(r) = E



Noninteracting many-particle system from
the viewpoint of DFT

E[n, vgyxl = TsIn] + jds TVqux(MIn(r) = E

S{E[n, Voux] — u(jn (r)d3r — N)} =0
|

8T [n] 6T [n]

B is unknown!

The above equation cannot be directly solved, but
the solution of the problem is known.

VZ
<— — + vaux(r)> b;(r) = €,¢0;(1) can be viewed as an auxiliary
2m single-particle problem.

N
€]
=1

N
no(r) = Z| b)) 17, Ep =
=1

l



Energy functional of interacting many-
particle system

B 1) = Tl0) + Veeln] + [ & v (rIn(r) = Fo
Re-expressing the functional as:

E, [n] = Ty[n] + Eq[n] + Eyeln] + j 03 70 (P)N(r)

T[n] : Kinetic energy functional of interacting system;
T[n] : Kinetic energy functional of noninteracting system;
Eyn]: The Hartree energy functional;

ExcInl = T[nl + Veeln] = Ts[n] — Eyln]

Exchange-correlation energy functional (everything unknown).



Applying the same strategy to interacting
problem ...

o] = T[] + Eyln] + Bxcln) + [ @ 1 (99n(0)

6T, [n] SE,.[n]
sn(r) +UH[Tl]+ sn(r) +vext(r)

B{Evext[n] _ u( j n (P d3r — N>} =0

8E,, . In] = j Sn(r)

—

Veff(r)

Suppose V¢ ¢(T) is known, one can obtain the ground-state electron density of
the original many-body problem via an auxiliary single-particle problem.



The Kohn-Sham equation (1965)

\

2m

VZ
(— St veff(r)> ¢(r) = (1)

To be solved
n(’)  SE,.[n] > self-consistently

veff(r) = Vet (1) + jdg r'

N lr—r'|  én(r) () = o (1)
n) = ) 1 @) I P
=1
" N
Eo = _%;«bl | 72 | cl)l) + EH[nO] + Exc[no] + fdg rvext(r)no(r)

In contrast to the Hartree case, by solving the Kohn-Sham equation, one can

in principle obtain the exact ground-state energy and density of interacting
systems, if E,..[n] is known exactly.



The underlying assumption of the Kohn-Sham
method: non-interacting v-representability

6T [n]
Sn(r)

+ Verp[n]() —n=10

SEyc[n]
dn(r)

Verrlnl(@) = Vylnl(r) + + Voo (1)

Kohn-Sham ansatz:

N
l n) = ) () I
=1

2

74
(—_ + Veff(r)> ¢y (r) = P (r)

2m

The ground-state density of any interacting system can be reproduced
by a non-interacting system.



The physical meaning of Kohn-Sham (KS)
orbitals (a highly debated topic)

KS orbitals and orbital energies are determined (implicitly) by the electron density:

€ = [nol; ¥; = Yy [ne]

KS orbitals are auxiliary variables, and have no strict physical meaning (except
for HOMO and LUMO). They are introduced to reproduce the particle density
of interacting systems

N
n) = ) | @) I
=1

. The energy of highest occupied molecular orbital (HOMO) €y corresponds to
the first ionization energy of the system —the Janak theorem (1978).

[ =E,(N—=1) —E,(N) = —ey



Features of the Kohn-Sham method

The KS scheme is one particular implementation of DFT (and not the unique
one). The key is to map the interacting many-body system to independent-
particle system; by solving the independent-particle problem self-

consistently, one obtains the particle density and ground-state energy of the
physical, interacting problem.

Comparison to the Hartree-Fock method:

The Hartree-Fock (HF) equations are obtained by minimizing the energy;
solving the HF equation one obtains the “best” energy under the single-
determinant constraint. HF is an approximation intrinsically. The KS
equations are obtained by mapping; solving the KS equation one obtains
the best particle density. The KS method is an exact method in principle.

In practical calculations E,..[n] and v,.[n] must be approximated.



ExcIn] and Vi [n] ()

Verf (1) = Vexr (1) + vy () + v, (1)

OFE, .
lnl(r) = "

Exact form E,..[n] of is not known, and will not be known. In practice the
approximation for E,.[n] determines the quality of KS-DFT calculations.

Looking for accurate and generally applicable E...[n] is a key issue in KS-
DFT.

The KS potential v ¢ [n](1) = veyr (r) + vy [n](1) + v, (7) is a unique
property of interacting electron systems.

n(r) & v, (r) Interacting physical system

n(r) < Verf () Ks model system
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Homework Il

Discuss and compare the following methods/approximations, and describe your
own understandings of these approaches.

1. the Hartree approximation

2. the Hartree-Fock approximation
3. Thomas-Fermi-Dirac method

4. Slater Xa method

5. Kohn-Sham method



