
PHYSICAL REVIEW A 73, 052324 �2006�
Quantum computation without strict strong coupling on a silicon chip
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We propose a potential quantum-computer hardware-architecture model on a silicon chip in which the basic
cell gate is the atom-photon controlled-phase-flip gate. This gate can be implemented through a single-photon
pulse’s scattering by a toroidal microcavity trapping a neutral atom, and it does not require very strict strong-
coupling regime and can work beyond the Lamb-Dicke limit with high fidelity and success probability under
practical noise environments. Especially, good and bad losses of the toroidal cavity are discussed in detail.
Finally, a possibly simple experiment based on current experimental technology is proposed to demonstrate our
scheme.
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I. INTRODUCTION

A number of theoretical and experimental schemes have
been proposed to perform the quantum computation and
build a quantum computer. To realize universal quantum
computation, one of the biggest obstacles is the quantum
hardware which plays a central role in the future quantum
computer. The proposals based on atomic, molecular, and
optical physics, solid state, and linear optics, etc., have been
suggested to construct a quantum computer �1� over the past
few years. Here, we focus on cavity-QED-based quantum
computation �2,3�, especially, distributed quantum computa-
tion �4,5�. Such proposals are very promising and highly
inventive. However, scalable quantum gates are especially
demanded for large-scale quantum computation.

Earlier approaches have turned out to be very challenging
owing to many technique difficulties, for example, the ability
to link spatially distant cavities with optical fibers. For
Fabry-Perot �FP� cavity which is widely discussed currently,
optical fiber coupling is possible. However the total coupling
efficiency is limited due to the absorption of cavity mirrors
�6�. Mirror absorption occupies an innegligible proportion in
the total cavity dissipation. Currently, the absorptive loss and
the transmission rate of the mirror coating are about 3.0 ppm
and 4.5 ppm, respectively �6�. It is difficult to gain smaller
absorption and freely control transmission grounded on cur-
rent mirror coating, polishing and coupling technologies. For
photonic crystal defect cavity which is another currently con-
sidered candidate, the demonstrated efficiency is only about
44% �7�. Therefore, in order to build a future large-scale
quantum computer through cavity QED, it is an important
task to look for another optical cavity system which not only
possesses high optical quality but also owns inherent capa-
bility.

Motivated by the pioneering work of Braginsky and
Ilchenko �8�, some of the high quality optical cavities to date
have been achieved in the form of whispering gallery mode
�WGM�, such as microcylinders, microdisks, and micro-
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spheres �9�. The combination of their ultrahigh quality factor
Q, very small mode volume Vm, and relatively easy fabrica-
tion process, drives them as promising candidates besides FP
cavities for cavity QED experiments �10,11�. Recently, tor-
oidal microcavity, a new type of WGM-based optical cavity
was fabricated by a combination of standard lithography, dry
etching technique, and selective reflow process, as outlined
in Ref. �12�. This kind of resonator has the following advan-
tages: �i� It supports very few radial and azimuthal modes,
and it is in contrast to microspheres which support �2l+1�
azimuthal modes. So this cavity system is allowed for single-
mode operations in principle. �ii� It has ultrahigh Q factor
which has been demonstrated up to 4�108 �13�, and smaller
mode volumes compared with microsphere cavity. Routinely,
Vm is less than 100 �m3 for regular minor and principal di-
ameters �12,13�, which indicates that there is an ultrahigh
coherent coupling factor g�r�= ��2�c /2��0Vm�1/2 between
an individual atom and a WGM field of interest. �iii� The
shape of toroidal microcavity allows an extra level of geo-
metric control over that provided by a spherical microcavity
�12�, leading to high experiment repeatability and control-
lable cavity modes. And more important, with the assistance
of taper waveguides, toroidal microcavity allows ultrapower-
ful integration on a silicon chip which enhances the physical
capability and thus offers a possibility of high-performance
quantum network.

II. TWO-SIDE-CAVITY MODEL

In this paper, we describe a potentially applicable hard-
ware model for scalable distributed quantum computation
and quantum networks based on toroidal microcavities and
waveguides in which the key step is to implement the atom-
photon quantum controlled-phase-flip �CPF� gate. To build
this model, we consider a neutral atom �for instance, cesium
which is discussed in Ref. �13�� located near the microtoroid
surface �14�, interacting with a fundamental TM cavity mode
since it holds the highest Q and the smallest Vm. For a bare
toroidal cavity, it is too hard to be used in cavity QED ex-
periments because of its full symmetry. WG modes in the
cavity cannot be excited and collected efficiently in free
space. Therefore, two taper waveguides are introduced as
controlled input and output ports of the cavity, as sketched in
©2006 The American Physical Society-1
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Fig. 1. The Hamiltonian for the single atom and single cavity
mode �h polarized� has the form H=� �e��e � + �g�r�ah

†�−

+H.c . � in the rotating frame at the cavity frequency �c �in
units of �=1�, where ah

† represents the creation Bose opera-
tor for h-polarized cavity photons; �− denotes atomic de-
scending operator �1��e�; � is defined as energy difference
��e−�c� between the atomic transition �1�→ �e� and cavity
mode; H.c. stands for the Hermitian conjugate.

For the toroidal cavity described above in the absence of
the atom, it includes three decay paths: two input-output
ports with associated loss coefficients �1 and �2 which can
be considered as good loss, the intrinsic decay of the bare
cavity mode itself described by �0 which is the bad loss. We
also define the total dissipation of the cavity mode �=�0
+�1+�2 for convenience. In addition, the decay of the bare
cavity mode and the atom are described by Lindblad relax-
ation operators Lc=��0ah and La=�	s �1��e�, respectively;
here 	s denotes the atomic spontaneous rate of the state �e� to
the ground state �1�. We neglect the spontaneous loss of the
upper level to other states. Therefore, omitting the terms
which concern the Langevin noises that have negligible con-
tribution to the dynamics, we can easily obtain Heisenberg
equations of motion for the internal cavity field and the atom,

dah�t�
dt

= − i�ah,H� −
�0

2
ah�t� − 	

j=1,2

� j

2
ah�t� + �� jah,j

in �t�� ,

�1a�

d�−�t�
dt

= − i��−,H� −
	s

2
�−�t� , �1b�

d�z�t�
dt

= − i��z,H� − 2	s�ee�t� , �1c�

where the atomic operator �z ��ee� is defined as �e��e �−�1�
��1 � ��e��e � �, and there are commutation relations

†

FIG. 1. �Color online� Left-hand side: Coupling between two
taper waveguides and a microtoroid. The h component of single-
photon pulse resonantly couples into the bare cavity via waveguide
1 �port 1� and departs through waveguide 2 �port 3�, while in any
other case, it directly passes the waveguide 1 and then leaves from
the cavity via port 2. Right-hand side: The energy level diagram of
the trapped atom, and transition �1�→ �e� �for example, the D2 tran-
sition of cesium�, with h polarization, couples to the cavity mode.
�ah�t� ,ah�t��=1 for the cavity mode field and
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�ah,j
in �t� ,ah,j

in†�t���=
�t− t�� for the one-dimensional input
h-polarized single-photon optical field. By taking the Fourier
transform A���= 1

�2�
�A�t�ei�tdt, we have �15–17�

ah��� =

g�r��−��� − i 	
j=1,2

�� jah,j
in ���

� +
i�

2

, �2a�

�−��� =
− g*�r�

� − � +
i	s

2

1
�2�

 �z�� − ���ah���d��,

�2b�

�z��� =
1

� + i	s

− i	sP��� −� 2

�
 g�r��−�� − ���

�ah
†���d�� − H.c.� , �2c�

where we have introduced the projector operator P
= �e��e � + �1��1� which counts the probability that the atom
perches in the state space ��1� , �e��, and P��� is its Fourier
transform, obviously, P���=
���. It is hard to get an ana-
lytical solution of the above equations. However, we can get
an expression of ah��� by omitting the terms involving more
than one ah��� operator since the input field is a sufficiently
weak single-photon pulse in our scheme, so we can obtain

ah��� =

− i	
j

�� jah,j
in ���

�� − �c� +
i

2
� − s

�3�

in which s= i �g�r��2	s / ��−�+ i
2	s���+ i	s�. Meanwhile, the

cavity output ah,j
out��� is associated with the input by the stan-

dard input-output formalism ah,j
out���=ah,j

in ���+�� jah���
which expresses the output field as a sum of the input field
plus the field radiated from the microtoroid cavity via the
waveguide. It is easy to find

ah,j
out��� =

�� + i
2 ��0 + �3−j − � j� − s�ah,j

in ��� − i��1�2ah,3−j
in ���

� +
i

2
� − s

�4�

We offer some brief remarks to our scheme before we get
the ultimately distinct expression ah,j

out���. First, the single-
photon pulse resonantly couples into the cavity only through
the taper 1, so we can execute ah,2

in ���=0. Second, we need
to operate the system in the limit with �T�1 in our scheme,
which implies the bandwidth �1/T� of the single photon in
frequency domain is much narrower than the cavity mode
�2�� and the linewidth �2	s� of the atomic energy level �e�,
i.e., �� � � �� ,	s�. In particular, near-field coupling constructs
efficiently only based on this condition. Finally, we use the

relation �1=�0+�2 to match the loss of cavity, which means
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the coupling to the cavity from the input waveguide ��1�
compensates for both the intrinsic loss of the cavity ��0� and
the power coupling to the other waveguide ��2�. It is more
interesting that we have noticed that the result agrees with
the condition of criticality Qbus

−1 =Qdrop
−1 +Q0

−1 in Ref. �18�.
Sum up the above and we can get

ah,1
out��� =

− �g�r��2/�− � + i
2	s�

i
2� − �g�r��2/�− � + i

2	s�
ah,1

in ��� , �5a�

ah,2
out��� =

− i��1�2

i

2
� − �g�r��2/
− � +

i

2
	s�ah,1

in ��� . �5b�

In order to get the expected results we discuss ah,j
out��� for

two different �.
�i� If the atomic transition �1�→ �e� is resonant with the

cavity mode of interest, i.e., �=0, then Eqs. �5� can be re-
written as

ah,1
out��� =

�g�r��2

1

4
�	s + �g�r��2

ah,1
in ��� , �6a�

ah,2
out��� = −

2��1�2/�

1 + 4�g�r��2/��	s�
ah,1

in ��� . �6b�

With the choice of the condition �g�r��2 /�	s�1, we find a
more abbreviated expression

ah,1
out��� � ah,1

in ���, and ah,2
out��� � 0. �7�

Both equations indicate that the single-photon pulse propa-
gating in the waveguide does not couple into the cavity even
though there is a perfect combination of phase matching and
modal frequency selection between the waveguide mode and
the bare cavity mode. The fact can be explained by the
dressed mode theory. When passing the coupling junction,
the input photon pulse sees two dressed cavity modes de-
rived from resonant atom-cavity coupling, not the original
bare cavity mode itself again. The dressed modes are
significantly detuned from the input single-photon pulse by

= ±g�r�, respectively �19�. In other words, the input single-
photon pulse and the cavity �including the atom� dissatisfy
the condition of near-field evanescent wave coupling �18�.
Therefore, the system �atom�photon� cannot get any global
phase in the case of the resonance between the atomic tran-
sition and the bare cavity mode.

�ii� If the atomic transition is largely detuned with the
cavity mode, or the atom occupies the other ground state �0�
which is an assistant state and is largely detuned with the
bare cavity mode, as showed in Fig. 1, then Eqs. �5� are
expressed as

ah,1
out��� → 0, �8a�
052324
ah,2
out��� → −

��1�2

�/2
ah,1

in ��� , �8b�

in this case we have �� �g�r� � ,� ,	s. The result shows that
the photon will fully couple into the cavity and then couples
to the second waveguide. Most important, the system obtains
a global phase ei� after the pulse departs from the cavity.
Furthermore, the large detuning is equivalent to the case that
no atom is in the cavity, in which the transmission Ttran=0.
And the coupling efficiency from the taper waveguide 1 to 2,

D= �− ��1�2

�/2
�2

=1−
2�0

� , can be obtained from Eqs. �8�, and it is
also a conclusion in Ref. �18�.

By now we can expediently show how to realize an atom-
photon CPF gate. We summarize as follows: �i� The photonic
�atomic� qubit is initially prepared in an equal �arbitrary�
coherent superposition of two orthogonal polarization com-
ponents �two atomic ground states� and can be expressed as
���p= ��h�+ �v�� /�2 ����a=� �0�+� �1��. �ii� Guide the single-
photon pulse to pass the coupling junction, as displayed in
the Fig. 2 and its caption. When the atom rests on the
state �0�, h component of the single-photon pulse obtains
ei� global phase change after it departs from the cavity
through the port 3, and v component does not gain any
phase change because it directly passes the coupling
region to the port 2 without any cavity influence; when
the atom is in the state �1�, both components of the pulse
do not gain any phase change because the photon is
largely detuned with the dressed cavity modes and passes
the cavity directly. As a final result based on above analysis,

we have ���ini= �� �0�+� �1����h�+ �v�� /�2Ideal CPF� ���ideal

= �−� �0� �h�+� �0� �v�+� �1� �h�+� �1� �v�� /�2. To obtain
atom-atom phase gate one just simply combines several
atom-photon phase gates �20�.

III. SINGLE-SIDE-CAVITY MODEL IN OVER-COUPLING
REGIME

In the above analysis, the scheme works under the regime
of critical coupling �18� between the cavity and the taper
waveguide 1 due to the loss relationship �1=�0+�2. How-
ever, it is not easy work to modulate every input waveguide
on the chip to achieve the critical-coupling regime and keep

FIG. 2. �Color online� Coupling between a microtoroidal cavity
and one taper waveguide. The single-photon pulse inputs from port
1 and outputs from port 2. Only when the atom is in the state �0�
and input photon pulse is h polarization, the pulse will couple into
and then couples out of the cavity via the same waveguide.
the coupling steady going. Fortunately, in the case of the
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deep over-coupling regime, the atom-photon CPF gate can
also be performed robustly, and the scheme can be even fur-
ther simplified by removing taper waveguide 2 �see Fig. 2�.
In this case, taper waveguide 1 is utilized as both input and
output ports of the single-photon pulse.

As a theoretical treatment, we just need �2=0 and
ah,2

in ���=0 in Eqs. �3� and �4�. Then Eq. �4� reduces to

ah
out��� =

� +
i

2
��0 − �1� − s

� +
i

2
��0 + �1� − s

ah
in��� , �9a�

av
out��� = av

in��� . �9b�

In the limit of �T�1, Eqs. �9� can be simplified to the fol-
lowing output-input relations:

ah,0
out��� =

�0 − �1

�0 + �1
ah,0

in ��� , �10a�

ah,1
out��� =

i

2
��0 − �1� − s

i

2
��0 + �1� − s

ah,1
in ��� , �10b�

av,0
out��� = av,0

in ��� , �10c�

av,1
out��� = av,1

in ��� , �10d�

where the subscripts h�v� and 0 �1� denote the input photon
polarization and the atomic occupation state, respectively. If
�g�r��2 /�	s�1 and �1 /�0�1 �deep over-coupling case�, we
get the final expression

ah,0
out��� = − ah,0

in ��� , �11a�

ah,1
out��� = ah,1

in ��� , �11b�

av,0
out��� = av,0

in ��� , �11c�

av,1
out��� = av,1

in ��� . �11d�

This indicates that atom-photon phase gate can be performed
in the over-coupling limit. At this time, other than FP cavity,
a toroid represents a natural single-side cavity which can

reduce the gate operation difficulty. In the following, we can
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find the present scheme works robustly in a large range of �1
which also decreases the experimental difficulty.

IV. GATE FIDELITY AND SUCCESS PROBABILITY

An efficient measure of the distance between the quantum
logic gates is the fidelity which can be defined as F
����out � ��ideal��2 in the present case, where ��out� is the
output state of the atom and photon after the actual CPF gate
and ��ideal� is the ideal output state. Equation �3� first reveals
that the fidelity of our scheme depends only on the magni-
tude of the coupling factor g�r�, but not on its phase. There-
fore, it is not necessary to trap the atom within one wave-
length scale space range and thus our scheme is robust even
beyond Lamb-Dicke limit. The same result also can be ob-
tained in the numerical simulation �21,20� and quantum tra-
jectory simulation �22�. In order to obtain the numerical fi-
delity we directly calculate Eqs. �9� and consider a finite
pulse whose profile is described by a Gauss function f�t�
exp�−�t−T /2�2 / �T /5�2��t� �0,T�� or any other shapes �23�
with long pulse duration for realistic application. For the
initial system state ��h�+ �v�� /�2 � �� �0�+� �1��, simply we
obtain

F =
1

4
� ����2�1 − exp
i arg

ah
out�����→�

ah
in���

��
+ ���2�1 + exp
i arg

ah
out�����=0

ah
in���

����F����2d��2

,

�12�

where F��� is the Fourier spectrum of the pulse. Note we
have normalized the factors of the final state since the photon
loss just decreases the success probability in our CPF-gate
scheme.

As shown in Fig. 3�a�, the minimal fidelity Fmin �for dif-
ferent initial atomic state� reaches very high, and it is up to
0.9998 for a set of parameters �g0 / �2�� ,�0 / �2�� ,	s /
�2�� ,� /�0�= �86 MHz,1.4 MHz,2.6 MHz,100� given in
Ref. �13�. Remarkably, the fidelity keeps high even though
the coherent coupling rate g is less than the total cavity decay
�, and thus our scheme can work robustly without strict
strong coupling �g�� ,	s�. Obviously, � /�0 and g /� are two
key parameters in the interest of higher gate fidelity. Big
� /�0 indicates that good loss dominates the cavity dissipa-
tion. However, � cannot be infinitely large for a given single-
photon coupling rate g. This can be understood from the

FIG. 3. �Color online� �a� Minimal gate fidel-
ity of the atom-photon phase gate vs � /�0 and
single-photon coupling rate g. �b� Minimal suc-
cess probability of the gate for different � /�0 and
g. Other common parameters, g0 / �2��=86 MHz,
�0 / �2��=1.4 MHz, 	s / �2��=2.6 MHz, T=1 �s.
dressed-mode theory, that is, 
 should be kept on the order of
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the cavity mode half-width �. So decreasing �0 is the only
best way to obtain large � /�0. WGM-based toroidal cavity
has much larger g0 and smaller �0 than the FP cavity, and its
�0 still has the potential to decrease two magnitudes com-
pared with the current obtained level. Furthermore, using the
near-field coupling method described in Ref. �18�, one can
easily modulate �1 through electric control of the distance
between waveguides and microtoroid.

Figure 3�b� shows the minimal success probability of the
gate which is related with photon loss during gate operation
if we detect the output photon. It is easily found that Pmin is
also dependent on both � /�0 and g /�. Similar with the fidel-
ity, Pmin also has maximum for a given g and an appropriate
� /�0, and bigger g results in the higher Pmin. Both Fmin and
Pmin can be improved by increasing g, reducing �0 and op-
timizing � /�0. However, our scheme still works robustly,
with the high gate fidelity and success probability in a large
range of � /�0 and g /�, and thus it decreases the experimen-
tal difficulties.

V. QUANTUM HARDWARE MODEL AND GATE
OPERATION

Now, we sketch our quantum computer hardware archi-
tecture model in Fig. 4 by using above atom-photon CPF
gates.

�i� Toroidal cavities, trapping one atom, respectively, can
be regularly built on a silicon chip �on the X−Y plane in Fig.
4� in which taper waveguides are used to link arbitrary dis-
tant cavities. The trapped atoms represent stationary qubits
for their long coherence time of ground inner states and fly-
ing photonic qubits allow robust communication between
arbitrary nodes of the distributed quantum computation

FIG. 4. �Color online� Sketched architecture model of the quan-
tum hardware. The whole system is built on a chip. The waveguides
in the figure are working for a realization of CPF gate between
atoms �11� and �22�.
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network. With the advance of current semiconductor technol-
ogy, fiber tapers can even be replaced by demonstrated
etched waveguides �24,25�. �ii� The gap between etched
waveguides and microcavities can be controlled through the
etched electrodes �26� �not described in Fig. 4�, which are of
importance since they permit designing appropriate quantum
circuit to accomplish a given quantum algorithm by simply
opening or closing the coupling between waveguides and
microcavities. �iii� We built our model by assuming single
neutral atoms are trapped near the surface of microcavities
using optical lattice �27�, which is still relatively difficult
under current experimental technology. However, several
possible methods may be utilized in the future. For example,
single neutral atoms, or possible rare-earth ions may be
placed on the toroidal cavity by STM. Using the same theory
model, single built quantum dots can work instead of single
trapped atoms in the present architecture. Most interesting,
coupling in the WGM-based microsphere cavity with single
nitrogen-vacancy defect centers was observed recently �28�,
which is a great advance in WGM-based cavity QED re-
search. Therefore, the whole quantum hardware system, in-
cluding the etched toroidal silica cavity with the three-level
quantum, waveguide, and electrode, has the potential to be
produced on a silicon chip.

Now we show how to implement some universal gate
operations. First, single-bit rotations on photons can be eas-
ily performed through some embedded waveplates which can
also be integrated in a chip and controlled by some respec-
tive electrodes. Single-bit rotations on three-level quantum
�here we assume they are atoms for convenience� can be
realized by two classical lasers’ irradiation �along Z axis in
Fig. 4� which are also used to write in and read out informa-
tion of the stationary qubits with a very high precision. Sec-
ond, to perform two-bit operation between two distant atoms,
for instance, the atoms �11� and �22� shown in Fig. 4, one
only need open the coupling to the respective cavities
through their etched electrodes. At this time, other cavities
with atoms are beyond the coupling system. A single-photon
pulse then interacts with the two cavities in turn, and thus it
carries out CPF gate operation between the two distant at-
oms.

Our hardware model is also especially suitable for the
generation of an atomic cluster state of an arbitrary configu-
ration �23�, and thus realize one-way quantum computation.
Accompanied with some local single-qubit measurements, it
is sufficient for simulating any arbitrary quantum logic op-
erations. Therefore, experimental or intrinsic difficulties in
performing two-qubit operations can be substituted with
�possibly probabilistic� generation of a cluster state.

VI. SUMMARY

In conclusion, we describe a scheme to build quantum
computers. Both strict strong coupling condition and Lamb-
Dicke limit are no longer required. Thus it has high experi-
mental feasibility based on current laboratory technique. By
combining etched waveguides and atom traps, toroidal mi-

crocavities on a chip are expected to be a quantum chip in
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the future. One can validate the theory by easily realizing an
atom-photon phase gate which is elementary in our scheme.
In order to do this, the experimental difficulty can be further
reduced. The single photon can be replaced by a weak co-
herent light pulse which just slightly decreases gate fidelity,
and the single atom also can be replaced by multiatoms �CPF
gate between single photon and multiatom �29�� which even

improve the fidelity.
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