您好!今天是2018年12月18日 星期二
加入收藏| 设为首页| 联系方式
网站首页
欢迎来到:中国科学院量子信息重点实验室
实验室概况
实验室介绍| 机构设置| 历史沿革| 联系我们
科研体系
固态量子计算研究单元| 量子纠缠网络研究单元| 量子集成光学芯片研究单元| 量子密码与量子器件研究单元| 量子理论研究单元
科研成果
研究进展| 获奖| 论文与专著| 专利
实验室成员
固定成员| 双聘人员| 博士后| 招聘信息
科普中心
郭光灿的量子十问 | 来自量子世界的新技术
研究生园地
研究生招生
新闻中心| 公告通知| 学术报告| 媒体关注| 友情链接

首页栏目

当前位置:首页>首页栏目> 学术报告

学术报告


11月13日Armando Rastelli报告

发布时间:2018-11-10

报告时间:11月13日 周二  下午3:00

报告地点:实验室3楼会议室

报告人:Armando Rastelli教授 (奥地利Johannes Kepler University Linz)

报告题目: Semiconductor quantum dots for quantum photonics applications

报告摘要: 

     Semiconductor quantum dots (QDs) obtained by epitaxial growth are regarded as one of the most promising solid-state sources of triggered single and entangled photons for applications in emerging quantum communication and photonic quantum-information-processing.
    In this talk, I will introduce the “features and bugs” of QDs in view of their potential applications, followed by a presentation of some of our recent results. In particular, I will focus on GaAs QDs in Al-GaAs matrix [1,2], which show a unique combination of appealing features: fast radiative rates of ~5 GHz, capability of generating near perfectly entangled photon pairs [3] with excellent indistinguisha-bility and ultralow multiphoton emission probability [4], as well as wavelength matched to the high-sensitivity range of silicon-based single-photon detectors. I will also show that some of the QD “bugs” can be fixed by integrating them onto piezoelectric actuators [5-8]. Strain provided by such actuators is a powerful tool to bring the emission energy of separate dots into resonance [7], restore broken symmetries [6], and also change the polarization properties of the emitted photons [2,8]. I will con-clude by discussing the open challenges.

参考文献 

[1] A. Rastelli et al. Phys. Rev. Lett. 92, 166104 (2004).
[2] Y. H. Huo et al. Appl. Phys. Lett. 102, 152105 (2013); Y. Huo et al. Nature Phys. 10, 46 (2014).
[3] D. Huber et al. Nat. Commun. 8, 15506 (2017); D. Huber et al. Phys. Rev. Lett. 121, 033902 (2018).
[4] L. Schweickert, et al. Appl. Phys. Lett. 112, 093106 (2018).
[5] A. Rastelli et al, Phys. Status Solidi (b), 249, 687 (2012).
[6] J. Martín-Sánchez et al, Adv. Opt. Mater. 4, 682 (2016); R. Trotta et al. Nat. Comm. 7, 10375 (2016).
[7] M. Reindl et al. Nano Lett. 17, 4090 (2017).
[8] X. Yuan et al. Nat. Comm. 9, 3058 (2018).