您好!今天是2018年9月20日 星期四
加入收藏| 设为首页| 联系方式
网站首页
欢迎来到:中国科学院量子信息重点实验室
实验室概况
实验室介绍| 机构设置| 历史沿革| 联系我们
科研体系
固态量子计算研究单元| 量子纠缠网络研究单元| 量子集成光学芯片研究单元| 量子密码与量子器件研究单元| 量子理论研究单元
科研成果
研究进展| 获奖| 论文与专著| 专利
实验室成员
固定成员| 双聘人员| 博士后| 招聘信息
科普中心
郭光灿的量子十问 | 来自量子世界的新技术
研究生园地
研究生招生
新闻中心| 公告通知| 学术报告| 媒体关注| 友情链接

首页栏目

当前位置:首页>首页栏目> 学术报告

学术报告


8月9日吴琳报告

发布时间:2018-08-08

报告时间:8月9日 周四  上午9:30

报告地点:实验室一楼会议室

报告人:吴琳 博士 (新加坡A*Star Institute of High Performance Computing)

报告题目: Computational nanoplasmonics/nanophotonics in sensing and quantum technologies

报告摘要: 

   Nanoplasmonics/nanophotonics defines the study of optical phenomena in the nanoscale vicinity of metal or dielectric surfaces. It is on the verge of developing into a promising technology platform for next-generation information technology, energy, high-density data storage, life/environment sciences and security. Research in this area has accelerated at an immense rate in the last couple of years, thanks to the advances in computation, nanofabrication and characterization to investigate light-fields of subwavelength dimensions. The nanoplasmonics/nanophotonics group in IHPC operates at the forefront of computational nanoplasmonics/nanophotonics research, and is collaborating with a few key groups both across Singapore and internationally. In this talk, a few collaborative works will be presented, e.g., quantum plasmon resonances [1–2], an on-chip electrical plasmon sources based on tunnel junctions [3–4], and plasmonic sensing from numerical modelling to biological testing [5–6]. Last but not least, the emerging application of nanoplasmonics/nanophotonics in quantum technologies will be highlighted. 

[1] “Quantum plasmon resonances controlled by molecular tunnel junctions.” Science 343, 1496 (2014). 

[2] ACS Nano 7, 707, (2013); RSC Adv. 6, 70884–70894 (2016). 

[3] “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions.” Nat. Photon. 10, 274–280 (2016).

[4] Opt. Express 24 (10), 10663-10674 (2016).

[5] “Highly sensitive graphene biosensors based on surface plasmon resonance.” Opt. Express 18(14), 14395 (2010).

[6] J. Opt. Soc. Am. B 29, 521 (2012); IEEE Photon. J. 4, 26, (2012); Lab Chip 13, 2405 (2013); Sens. Actuator B-Chem 186, 205 (2013); ACS Catal. 4 (12), 4269 (2014); Plasmonics 9 (4), 825 (2014); Lab Chip, 15(1), 253 (2015); Anal. Chim. Acta 883, 22 (2015); Nanoscale 8, 8008–8016 (2016); Anal. Chem. 88 (23), 11924–11930 (2016); J. Mater. Chem. C, 4, 9897–9904 (2016); Phys. Chem. Chem. Phys. 18, 19324–19335 (2016); Int. J. Nanomedicine 12, 2307–2314 (2017); ACS Sensors, 2 (5), 635–640 (2017).