您好!今天是2018年9月21日 星期五
加入收藏| 设为首页| 联系方式
网站首页
欢迎来到:中国科学院量子信息重点实验室
实验室概况
实验室介绍| 机构设置| 历史沿革| 联系我们
科研体系
固态量子计算研究单元| 量子纠缠网络研究单元| 量子集成光学芯片研究单元| 量子密码与量子器件研究单元| 量子理论研究单元
科研成果
研究进展| 获奖| 论文与专著| 专利
实验室成员
固定成员| 双聘人员| 博士后| 招聘信息
科普中心
郭光灿的量子十问 | 来自量子世界的新技术
研究生园地
研究生招生
新闻中心| 公告通知| 学术报告| 媒体关注| 友情链接

首页栏目

当前位置:首页>首页栏目> 学术报告

学术报告


7月3日Linran Fan报告

发布时间:2018-06-28

报告时间:7月3日 周二  上午9:30

报告地实验室一楼会议室

报告人:Linran Fan 助理教授 (美国 University of Arizona)

报告题目: Quantum photon conversion with integrated nonlinear photonics

报告摘要: The ability to manipulate photons is of critical importance for both fundamental quantum optics studies and practical quantum communication applications. While integrated photonic circuits provide the unprecedented power to realize complex photon control with minimized structures, most materials used in integrated photonic circuits lack the preferred second-order optical nonlinearity, which limits photon control functionalities. On the other hand, the wurtzite crystal structure gives rise to the strong second-order optical nonlinearity and piezoelectric effect in aluminum nitride. Together with its low optical and mechanical losses, integrated aluminum nitride photonics can provide new aspects and enable novel methods for quantum photon control. In this talk, I will present our effort in developing quantum photon control technology based on aluminum nitride photonics. First, piezo-optomechanical systems will be discussed, with which cascaded optical transparency, adiabatic single photon frequency shifting, and time lens are demonstrated. Then, I will introduce superconducting cavity electro-optics, and the coherent photon conversion between microwave and optical frequencies will be exhibited. 

Bio:

Linran Fan received his B.S. in physics from Peking University in 2011, and his PhD in electrical engineering from Yale University in 2017. He finished his postdoctoral research at Caltech from 2017 to 2018. He is now an assistant professor in College of Optical Sciences at University of Arizona. His research interests focus on the development of on-chip photon control technology using nonlinear optical, mechanical, and electro-optic effects at nanometer scale with applications targeting quantum and classical information processing.