您好!今天是2018年4月21日 星期六
加入收藏| 设为首页| 联系方式
网站首页
欢迎来到:中国科学院量子信息重点实验室
实验室概况
实验室介绍| 机构设置| 历史沿革| 联系我们
科研体系
固态量子计算研究单元| 量子纠缠网络研究单元| 量子集成光学芯片研究单元| 量子密码与量子器件研究单元| 量子理论研究单元
科研成果
研究进展| 获奖| 论文与专著| 专利
实验室成员
固定成员| 双聘人员| 博士后| 招聘信息
科普中心
郭光灿的量子十问 | 来自量子世界的新技术
研究生园地
研究生招生
新闻中心| 公告通知| 学术报告| 媒体关注| 友情链接

首页栏目

当前位置:首页>首页栏目> 学术报告

学术报告


1月25日Hannes Busche报告

发布时间:2018-01-22

报告时间:1月25日 周四  上午10:00

报告地实验室一楼会议室

报告人:Dr. Hannes Busche(Joint Quantum Centre Durham-Newcastle)

报告题目: Contactless quantum non-linear optics in cold Rydberg ensembles

摘要:

Rydberg non-linear optics [1] has emerged as a viable approach to induce strong effective photon-photon interactions, e.g. for applications in optical quantum information processing. Using electromagnetically induced transparency and photon storage, the μm-ranged dipolar interactions between collective Rydberg excitations, can be mapped onto photons. So far, experiments focussed on observing Rydberg-mediated photon interactions between overlapping modes within a single cold atomic medium [1]. Recently however, we have demonstrated an effective interaction between photons stored in spatially separate atomic ensembles and propagating in non-overlapping modes [2]. By analysing the statistics of the retrieved photons, we observe how the interaction varies while changing the distance between the clouds, the Rydberg state employed for storage, and the interaction time. 

The stored photons can be coherently controlled using an additional microwave field which drives transitions between Rydberg states. Interfacing with microwaves allows to drive high-fidelity Rabi oscillations while the photons are stored and to shape the retrieved pulse [3]. The degrees of freedom provided by contactless, long-range effective interactions between stored photons combined with microwave control of their state and phase may lead towards a Rydberg-based all-optical quantum gate [4] and applications in quantum simulation.

Ref: 

[1] O. Firstenberg, C. S. Adams, and S. Hofferberth, J. Phys. B, 49, 15 (2016).
[2] H. Busche, P. Huillery, S. W. Ball, T. Ilieva, M. P. A. Jones, and C. S. Adams, Nat. Phys.,13, 655–658 (2017).
[3] S. W. Ball et al., in preparation.
[4] D. Paredes-Barato and C. S. Adams, Phys. Rev. Lett.,112, 040501 (2014).