您好!今天是2017年12月12日 星期二
加入收藏| 设为首页| 联系方式
网站首页
欢迎来到:中国科学院量子信息重点实验室
实验室概况
实验室介绍| 机构设置| 历史沿革| 联系我们
科研体系
固态量子计算研究单元| 量子纠缠网络研究单元| 量子集成光学芯片研究单元| 量子密码与量子器件研究单元| 量子理论研究单元
科研成果
研究进展| 获奖| 论文与专著| 专利
实验室成员
固定成员| 双聘人员| 博士后| 招聘信息
科普中心
郭光灿的量子十问 | 来自量子世界的新技术
研究生园地
研究生招生
新闻中心| 公告通知| 学术报告| 媒体关注| 友情链接

首页栏目

当前位置:首页>首页栏目> 学术报告

学术报告


12月5日郑炜报告

发布时间:2017-12-01

报告时间:12月5日 周二  下午3:00

报告地实验室一楼会议室

报告人:郑炜 (Cavendish Laboratory,Cambridge)

报告题目: Particle transport in Dynamical Optical lattices

报告摘要:

    One of the most interesting directions of research in coherent quantum systems concerns the collective dynamics of coupled atom-photon ensembles. Coupling cold atoms even to a single cavity mode can dramatically change the steady state of the atomic gas and lead to interesting nonequilibrium dynamics. 

    In this talk, I will introduce our recent work on particle transport in dynamical optical lattices. I will first talk about the dynamics of fermions in an optical lattice with cavity induced hopping. For an infinite lattice, we find a superradiant phase with an infinitesimal pumping threshold which induces a directed particle flow. We explore the fate of this flow in a finite lattice with boundaries, studying the nonequilibrium dynamics including fluctuation effects. The short-time dynamics is dominated by superradiance, while the long-time behavior is governed by cavity fluctuations. We show that the steady state in the finite lattice is not unique and can be understood in terms of coherent Bosonic excitations above a Fermi surface in real space. 

    Second I will discuss a cavity-induced dynamical optical lattice, in which the dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice. This dynamical lattice can be regarded as a dynamical version of the Aubry-Andr??e model, which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between super-diffusive and sub-diffusive regimes. To understand this anomalous diffusion, we use the quantum trajectory picture to map the dynamics into a Le'vy walk with rests.