您好!今天是2017年5月26日 星期五
加入收藏| 设为首页| 联系方式
网站首页
欢迎来到:中国科学院量子信息重点实验室
实验室概况
实验室介绍| 机构设置| 历史沿革| 联系我们
科研体系
半导体量子芯片研究单元| 量子纠缠网络研究单元| 量子集成光学芯片研究单元| 量子密码与量子器件研究单元| 量子理论研究单元
科研成果
研究进展| 获奖| 论文与专著| 专利
实验室成员
固定成员| 双聘人员| 博士后| 招聘信息
科普中心
郭光灿的量子十问 | 来自量子世界的新技术
研究生园地
研究生招生
新闻中心| 公告通知| 学术报告| 媒体关注| 友情链接

首页栏目

当前位置:首页>首页栏目> 学术报告

学术报告


4月28日张杨报告

发布时间:2017-04-27

报告时间:4月28日 周五 下午3:00

报告地实验室一楼会议室

报告人:张杨副研究员(微尺度)

报告题目:Exploring single-molecule optoelectronics with scanning tunneling microscope induced luminescence technique

报告摘要:

The tunneling electrons in a scanning tunneling microscope (STM) can not only be used to image and manipulate surface nanostructures with atomic resolution, but also excite light emission from STM junctions by inelastic tunneling electrons. STM induced luminescence (STML) technique, combining the STM with optical detection, can do nano-imaging beyond diffraction limit, which provide photon images with spatial resolution down to sub-nanometer scale.


In this talk, I first present the realization of molecule-specific electroluminescence from a well-defined isolated single molecule and the sub-nanometer resolved spectroscopic imaging with STML. Then, with STM manipulation, artificial molecular structures can be constructed. I shall demonstrate the real-space visualization of coherent intermolecular dipole-dipole coupling for constructed molecular oligomers through molecular electroluminescence imaging. The spatial distributions of the excitonic coupling for different energy states indicate that the behavior of the coherent dipole-dipole coupling well resembles the σ and π orbitals in a molecule, revealing the local optical responses and their correlations with transition dipole orientations and phase relations. With the knowledge thus gained, electrically driven single photon superradiance from an entangled system of well-defined molecular oligomers is achieved. These results not only substantially deepen the understanding on and facilitate spectral assignments for the coherent excitonic coupling in molecular systems, but also enable to engineer electrically driven single-molecule superradiance and even quantum photon sources from entangled molecular architectures.