您好!今天是2019年10月17日 星期四
加入收藏| 设为首页| 联系方式
网站首页
欢迎来到:中国科学院量子信息重点实验室
实验室概况
实验室介绍| 机构设置| 历史沿革| 联系我们
科研体系
固态量子计算研究单元| 量子纠缠网络研究单元| 量子集成光学芯片研究单元| 量子密码与量子器件研究单元| 量子理论研究单元
科研成果
研究进展| 获奖| 论文与专著| 专利
实验室成员
固定成员| 双聘人员| 博士后| 招聘信息
科普中心
郭光灿的量子十问 | 来自量子世界的新技术
研究生园地
研究生招生| 博士答辩
新闻中心| 公告通知| 学术报告| 媒体关注| 友情链接

首页栏目

当前位置:首页>首页栏目> 学术报告

学术报告


5月27日报告

发布时间:2015-05-27

报告题目:Relaxation of a Moving Spin Qubit


报告人:Xuedong Hu, Department of Physics, University at Buffalo


报告时间:5月27日(周三)下午2点


摘要:Recent experimental and theoretical research on spin qubits in quantum dots have clearly demonstrated that spins have long coherence times and can be reliably controlled.  Electron spin two-qubit gates can be performed using the strong exchange interaction between dots, which however is short-ranged. How to achieve long-range quantum communication for spin qubits thus remains a significant open problem in the scale-up of spin qubit architectures.  One proposed approach involves the transportation of the electrons themselves, which is attractive because of its conceptual simplicity and its similarity to the conventional charge-coupled devices. 
    Here I discuss our recent work on the physics of electron spin decoherence when the quantum dot is in motion.  Specifically, we find that the motion induced spin decoherence is a pure longitudinal relaxation channel, whose rate depends on factors such as spin-orbit coupling strength, electron-phonon coupling strength, disorder in the substrate, the strength of the magnetic field, and the speed of the quantum dot motion [1,2].  In the case of electron-phonon interaction induced spin relaxation, we find a range of interesting phenomena originating from the Doppler effect as we vary the quantum dot speed from the subsonic regime to the supersonic regime, including frequency shift in emitted phonons, spin relaxation boom in analogy to sonic boom, and Cherenkov radiation of phonons [2].  
Our results are not only important in identifying how severe a problem spin  decoherence could be when it is in motion, but also reveal interesting possibilities in coherent control of phonons in a semiconductor nanostructure.