您好!今天是2019年7月20日 星期六
加入收藏| 设为首页| 联系方式
网站首页
欢迎来到:中国科学院量子信息重点实验室
实验室概况
实验室介绍| 机构设置| 历史沿革| 联系我们
科研体系
固态量子计算研究单元| 量子纠缠网络研究单元| 量子集成光学芯片研究单元| 量子密码与量子器件研究单元| 量子理论研究单元
科研成果
研究进展| 获奖| 论文与专著| 专利
实验室成员
固定成员| 双聘人员| 博士后| 招聘信息
科普中心
郭光灿的量子十问 | 来自量子世界的新技术
研究生园地
研究生招生| 博士答辩
新闻中心| 公告通知| 学术报告| 媒体关注| 友情链接

首页栏目

当前位置:首页>首页栏目> 学术报告

学术报告


5月11日报告

发布时间:2015-05-11
报告题目:A quantum Fredkin gate
报告人:Dr. Raj Patel(Centre for Quantum Dynamics, Griffith University)
时间:5月11日下午3:00
摘要: One of the greatest challenges in modern science is the realization of full-scaled quantum computers which, for certain problems, provide up to an exponential speedup over current technology. These computers are constructed from quantum logic gates which provide a means for manipulating quantum states and harnessing phenomena such as superposition and entanglement to process information. While the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems to encode multiple quantum bits or ‘qubits’ have made demonstrations of more complex operations intractable. This is exemplified in the classical Fredkin (or controlled-swap) gate for which, despite many theoretical proposals, a truly quantum analogue has yet to be realized. Here by exploiting additional degrees of freedom of the information carrier we demonstrate the first quantum Fredkin gate. We show that our scheme improves the overall probability of success by almost two orders of magnitude compared to previous proposals. In addition, our gate is capable of generating genuine tripartite entanglement in the form of GHZ states with fidelities up to 93% which are the highest reported to date for photonic qubits. Finally we demonstrate the use of our gate in performing direct characterisation of a quantum state without recourse to quantum state tomography. We believe our approach should prove valuable in realising current and future linear optical quantum information protocols.